“第四届中国大学生5分钟科研英语演讲大赛(东华大学赛区)”暨“东华大学第二届学术英语演讲大赛”初赛通知

发布时间:2021-05-21浏览次数:3197

 “第四届中国大学生5分钟科研英语演讲大赛(东华大学赛区)”

暨“东华大学第二届学术英语演讲大赛”初赛通知


为响应国家培养具有国际竞争力的新工科、新医科、新农科、新文科的创新人才,用英语讲科研的能力,继在2020年成功举办“第三届中国大学生5分钟科研英语演讲大赛(东华大学赛区)”暨“东华大学第一届学术英语演讲大赛”后,我们决定在20215月至202112月继续举办“第四届中国大学生5分钟科研英语演讲大赛(东华大学赛区)”暨“东华大学第二届学术英语演讲大赛”。


赛事目的:提高本校本科生和研究生用英语从事专业学习、科研创新和学术交流的能力,帮助我国未来的科研工作者有效地向国际同行介绍自己的学术思想和科研成果。


参赛对象:东华大学全体在校本科生和研究生,报名分为本科组和研究生组。


参赛要求:

参赛选手需用易于理解的英语、在5分钟时间内向没有专业背景的听众(这是判断演讲成功有否的一个重要标准)介绍一项与自己专业相关(包括专业科普类)的研究。

一.研究形式可以介绍自己已经发表或撰写中的科研论文,也可以介绍尚处于想法阶段的科研计划(但不能重复前三届的获奖作品)。

二.演讲的具体内容包括:1.论文标题和研究领域;2.研究现状;3.研究目的问题或假设);4.研究方法;5.研究结果(或预期结果);6.结果讨论和研究意义;7.参考文献(可放在视频的PPT上)。

三.作品形式是5分钟的视频和200-250词左右的英文论文摘要(结构按学科不同,见附录摘要样本)

四.参赛选手需遵守学术道德,不得出现以下学术不端行为:

1.抄袭、剽窃、侵吞他人学术成果;2.篡改他人学术成果;3.伪造或者篡改数据、文献,捏造事实;4.未参加创作,在他人学术成果上署名。如发现选手有上述行为,组委会将取消选手的参赛资格。


赛事规则注意事项:

1.上传的视频为5分钟(误差不超过1分钟)。

2.视频为MP4格式,大小在100M以内。

3.视频应在静止的位置上进行连续录制,无剪辑,无中断。视频画面可进   行缩放。

4.选手需在视频中面对观众,保证95%以上时间是在与观众交流,而不是背对观众解释PPT

5.演讲可使用PPT作为辅助材料,但页数不能超过5(不包括参考文献页)

6.演讲中不能使用其他的电子媒体素材,如声音或视频等;也不要使用道具类的辅助手段。

7.演讲语言应为口语,不包括诗歌朗诵、说唱乐、歌曲等语言形式。

8.选手不得介绍自己学校和姓名,同时不出现在PPT标题页。


本次大赛秉承公正、公开、公平的原则,邀请专家(专业教师和英语教师)共同进行评审,最终经复赛,落地决赛决出本科组和研究生组特等奖一名、一等奖、二等奖、三等奖若干名,所有获奖者将获得证书和奖金。


初赛报名截止时间:2021620

初赛形式:视频提交,由专家(语言教师和专业教师)网上审评(可参考往届视频)

初赛资料

  1. 附录一的大赛作品报名表(作品标题必须和论文摘要,演讲视频,PPT及演讲稿一致,以便识别);

  2. 一个5分钟演讲视频(不得出现学校和本人姓名,MP4文件格式,大小在100M以内);

  3. 200-250词左右的英文论文摘要(参见附录二摘要样本)(不得出现学校和本人姓名);

  4. PPT及演讲稿(PPT展示内容,页数控制在不超过5页,不得出现学校和本人姓名);

*请在规定时间内,将以上资料传到指定的邮箱。


初赛提交作品命名方式:选手姓名+专业+推荐老师姓名


接收作品邮箱(本科生)

composition2021@163.com

接收作品邮箱(硕士生)

freelancer2021@163.com



大赛咨询群

QQ799470493











附录一

 

2021年度“中国大学生5分钟科研英语演讲”比赛报名表

姓名

 

性别

 

年级(本科或研究生)

 

研究方向

 

学校

 

学院

 

E-mail地址

 

联系电话

 

专业指导教师(无就不填)

 

英语指导教师(无就不填)

 

英语摘要(Abstract

[英语摘要约200-250词,包括:

(1) Title (capturing the essence of your research work in a succinct

way)

(2) Background (showing how your study builds on and extends prior

work)

(3) Purpose (identifying the research questions to be investigated)

(4) Methods (describing the methods used for data collection and

analysis)

(5) Findings (the findings can be complete, preliminary, or hypothetical, depending on the status of your research)

(6) Conclusion and implications (indicating the significance of your

research in a larger context)


附录二

摘要样本


Understanding Service Integration of Online Social Networks: A Data-Driven Study

  

The cross-site linking function is widely adopted by online social networks (OSNs). This function allows a user to link her account on one OSN to her accounts on other OSNs. Thus, users are able to sign in with the linked accounts, share contents among these accounts and import friends from them. It leads to the service integration of different OSNs. This integration not only provides convenience for users to manage accounts of different OSNs, but also introduces usefulness to OSNs that adopt the cross-site linking function. In this paper, we investigate this usefulness based on users’ data collected from a popular OSN called Medium. We conduct a thorough analysis on its social graph, and find that the service integration brought by the cross site linking function is able to change Medium’s social graph structure and attract a large number of new users. However, almost none of the new users would become high Page Rank users (PageRank is used to measure a user’s influence in an OSN). To solve this problem, we build a machine-learning-based model to predict high PageRank users in Medium based on their Twitter data only. This model achieves a high F1-score of 0.942and a high area under the curve (AUC) of 0.986. Based on it, we design a system to assist new OSNs to identify and attract high PageRank users from other well-established OSNs through the cross-site linking function.

  


Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia

  

BACKGROUND 

The initial cases of novel coronavirus (2019-nCoV)–infected pneumonia (NCIP) occurred in Wuhan, Hubei Province, China, in December 2019 and January 2020. We analyzed data on the first 425 confirmed cases in Wuhan to determine the Epidemiologic characteristics of NCIP.

METHODS 

We collected information on demographic characteristics, exposure history, and illness timelines of laboratory-confirmed cases of NCIP that had been reported by January 22, 2020. We described characteristics of the cases and estimated the key epidemiologic time-delay distributions. In the early period of exponential growth, we estimated the epidemic doubling time and the basic reproductive number.

RESULTS 

Among the first 425 patients with confirmed NCIP, the median age was 59 Years and 56% were male. The majority of cases (55%) with onset before January 1, 2020, were linked to the Huanan Seafood Wholesale Market, as compared with 8.6% of the subsequent cases. The mean incubation period was 5.2 days (95% confidence interval [CI], 4.1 to 7.0), with the 95th percentile of the distribution at 12.5 days. In its early stages, the epidemic doubled in size every 7.4 days. With a mean serial interval of 7.5 days (95% CI, 5.3 to 19), the basic reproductive number was estimated to be 2.2 (95% CI, 1.4 to 3.9).

CONCLUSIONS 

On the basis of this information, there is evidence that human-to-human Transmission has occurred among close contacts since the middle of December 2019. Considerable efforts to reduce transmission will be required to control outbreaks if similar dynamics apply elsewhere. Measures to prevent or reduce transmission should be implemented in populations at risk. (Funded by the Ministry of Science and Technology of China and others.)


往届视频参见:


第一届视频

http://www.sentbase.com/cn5mrp1/?content-app-content&contentid=613

第二届视频

http://sentbase.com/cn5mrp/?content-app-content&contentid=6233

第三届视频

http://sentbase.com/cn5mrp/?content-app-content&contentid=632



东华大学外国语学院


2021.5.18